Difference between revisions of "Data"
Line 43: | Line 43: | ||
user 0m0.000s | user 0m0.000s | ||
sys 0m0.156s | sys 0m0.156s | ||
− | + | ||
desktop$ tar --use-compress-program=xz -xf linux-3.10-rc7.tar.xz | desktop$ tar --use-compress-program=xz -xf linux-3.10-rc7.tar.xz | ||
desktop$ time cp -r linux-3.10-rc7 linux-3.10-rc7.copy | desktop$ time cp -r linux-3.10-rc7 linux-3.10-rc7.copy |
Revision as of 11:21, 25 June 2013
Data: How to surf, rather than drown!
Introduction
Data on Disk
A Salutary Tale of Copying Files
We'll start by considering data stored on a disk drive. One thing that you might not know is that file systems and disk drives perform best when they are dealing with larger files. But how large is large? Here's a simple example, which you can try yourself:
First of all, let's get ourselves a large-ish file. A compressed tarball of the source code for the Linux kernel will do. In this case it's about 70MB in size. We can time how long it takes to create a copy of it. Below are the results of doing this experiment on BlueCrystal phase 2:
BCp2$ wget https://www.kernel.org/pub/linux/kernel/v3.x/testing/linux-3.10-rc7.tar.xz BCp2$ time cp linux-3.10-rc7.tar.xz linux-3.10-rc7.tar.xz.copy real 0m3.530s user 0m0.000s sys 0m0.068s
Now, that tar ball contains around 47,000 files, many of which are only a few hundred or thousand of bytes in size. These are files at the smaller end of the scale. Let's unpack the tarball and time how long it takes to copy these files, one-by-one:
BCp2$ tar --use-compress-program=xz -xf linux-3.10-rc7.tar.xz BCp2$ time cp -r linux-3.10-rc7 linux-3.10-rc7.copy real 18m17.102s user 0m0.214s sys 0m6.359s
Yikes! that took over 350 times longer than copying the single, large file. (These timings were taken at ~10:45 on the 25 Jun 2013. Any differences from the above values will be due to differences in load on the filesystem, which is shared with all the other users of the cluster. More of that in a moment..)
Now, we can repeat these tests on a different system. I got the values below from my very standard desktop machine:
desktop$ wget https://www.kernel.org/pub/linux/kernel/v3.x/testing/linux-3.10-rc7.tar.xz desktop$ time cp linux-3.10-rc7.tar.xz linux-3.10-rc7.tar.xz.copy real 0m0.192s user 0m0.000s sys 0m0.156s desktop$ tar --use-compress-program=xz -xf linux-3.10-rc7.tar.xz desktop$ time cp -r linux-3.10-rc7 linux-3.10-rc7.copy real 0m25.961s user 0m0.168s sys 0m2.360s
That's a lot quicker! However, copying the small files still took over 130 times longer than copying the large file.
(Again, your mileage may vary.)
But hang on, I thought BlueCrystal was meant to be "super"?!
System | Clients x1 | Clients x4 | Clients x8 |
Desktop | ~65MB/s | ~10MB/s | ~0.5MB/s |
Parallel FS | ~160MB/s | 130MB/s | 67MB/s |
Data over the Network
Filling the pipe.
Data when Writing your own Code
Memory Hierarchy
L1 Cache | Picking up a book off your desk (~3s) |
L2 Cache | Getting up and getting a book off a shelf (~15s) |
Main Memory | Walking down the corridor to another room (several minutes) |
Disk | Walking the coastline of Britain (about a year) |
Files & File Formats
Data Analytics
Some common operations you may want to perform on your data:
- Cleaning
- Filtering
- Calculating summary statics (means, medians, variances)
- Creating plots & graphics
- Tests of statistical significance
- Sorting and searching
Selecting the right tools.
Databases
GUI. Accessing from a program or script. Enterprise Grade The data haven.
Numerical Packages
Such as R, MATLAB & Python.
Bespoke Applications
Rolling Your Own
Principles: Sort & binary search.
Tools: Languages, libraries and packages.
When Data gets Big
Quotas.
Local Disks.
Swapping.
Data the Google way - Map-Reduce.
Hadoop & Friends.
Summary
- Use large files whenever possible.
- Disks are poor at servicing a large number of seek requests.
- Check that you're making best use of a computer's memory hierarchy, i.e.:
- Think about locality of reference.
- Go to main memory as infrequently as possible.
- Go to disk as infrequently as possible as possible.
- Check that your are still using the right tools if your data grows.