Difference between revisions of "LinAlgebraPacks"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
m (Protected "LinAlgebraPacks" ([edit=sysop] (indefinite) [move=sysop] (indefinite)))  | 
				|||
| Line 1: | Line 1: | ||
| − | |||
=Introduction=  | =Introduction=  | ||
| Line 7: | Line 6: | ||
</pre>  | </pre>  | ||
| − | http://en.wikipedia.org/wiki/System_of_linear_equations  | + | From http://en.wikipedia.org/wiki/System_of_linear_equations:  | 
| + | |||
| + | The following computation shows Gauss-Jordan elimination applied to the matrix above:  | ||
| + | :<math>\left[\begin{array}{rrr|r}  | ||
| + | 1 & 3 & -2 & 5 \\  | ||
| + | 3 & 5 & 6 & 7 \\  | ||
| + | 2 & 4 & 3 & 8  | ||
| + | \end{array}\right]</math><math>\sim  | ||
| + | \left[\begin{array}{rrr|r}  | ||
| + | 1 & 3 & -2 & 5 \\  | ||
| + | 0 & -4 & 12 & -8 \\  | ||
| + | 2 & 4 & 3 & 8  | ||
| + | \end{array}\right]</math><math>\sim  | ||
| + | \left[\begin{array}{rrr|r}  | ||
| + | 1 & 3 & -2 & 5 \\  | ||
| + | 0 & -4 & 12 & -8 \\  | ||
| + | 0 & -2 & 7 & -2  | ||
| + | \end{array}\right]</math><math>\sim  | ||
| + | \left[\begin{array}{rrr|r}  | ||
| + | 1 & 3 & -2 & 5 \\  | ||
| + | 0 & 1 & -3 & 2 \\  | ||
| + | 0 & -2 & 7 & -2  | ||
| + | \end{array}\right]</math><math>\sim  | ||
| + | \left[\begin{array}{rrr|r}  | ||
| + | 1 & 3 & -2 & 5 \\  | ||
| + | 0 & 1 & -3 & 2 \\  | ||
| + | 0 & 0 & 1 & 2  | ||
| + | \end{array}\right]</math><math>\sim  | ||
| + | \left[\begin{array}{rrr|r}  | ||
| + | 1 & 3 & -2 & 5 \\  | ||
| + | 0 & 1 & 0 & 8 \\  | ||
| + | 0 & 0 & 1 & 2  | ||
| + | \end{array}\right]</math><math>\sim  | ||
| + | \left[\begin{array}{rrr|r}  | ||
| + | 1 & 3 & 0 & 9 \\  | ||
| + | 0 & 1 & 0 & 8 \\  | ||
| + | 0 & 0 & 1 & 2  | ||
| + | \end{array}\right]</math><math>\sim  | ||
| + | \left[\begin{array}{rrr|r}  | ||
| + | 1 & 0 & 0 & -15 \\  | ||
| + | 0 & 1 & 0 & 8 \\  | ||
| + | 0 & 0 & 1 & 2  | ||
| + | \end{array}\right].</math>  | ||
| + | |||
| + | To solve this using LAPACK:  | ||
<pre>  | <pre>  | ||
Revision as of 15:36, 27 January 2011
Introduction
svn co https://svn.ggy.bris.ac.uk/subversion-open/num-methods1 ./num-methods1
From http://en.wikipedia.org/wiki/System_of_linear_equations:
The following computation shows Gauss-Jordan elimination applied to the matrix above:
- [math]\displaystyle{ \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 3 & 5 & 6 & 7 \\ 2 & 4 & 3 & 8 \end{array}\right] }[/math][math]\displaystyle{ \sim \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 0 & -4 & 12 & -8 \\ 2 & 4 & 3 & 8 \end{array}\right] }[/math][math]\displaystyle{ \sim \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 0 & -4 & 12 & -8 \\ 0 & -2 & 7 & -2 \end{array}\right] }[/math][math]\displaystyle{ \sim \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 0 & 1 & -3 & 2 \\ 0 & -2 & 7 & -2 \end{array}\right] }[/math][math]\displaystyle{ \sim \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & 1 & 2 \end{array}\right] }[/math][math]\displaystyle{ \sim \left[\begin{array}{rrr|r} 1 & 3 & -2 & 5 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 2 \end{array}\right] }[/math][math]\displaystyle{ \sim \left[\begin{array}{rrr|r} 1 & 3 & 0 & 9 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 2 \end{array}\right] }[/math][math]\displaystyle{ \sim \left[\begin{array}{rrr|r} 1 & 0 & 0 & -15 \\ 0 & 1 & 0 & 8 \\ 0 & 0 & 1 & 2 \end{array}\right]. }[/math]
 
To solve this using LAPACK:
cd num-methods1/examples/example1 make ./dgesv-example.exe