Difference between revisions of "Scaling"
(11 intermediate revisions by the same user not shown) | |||
Line 34: | Line 34: | ||
<math> | <math> | ||
− | diff = - \frac{2fA}{n+2} (\rho\,g)^n \left ( \frac{\sum H}{2} \right ) ^{n+2} \left | \frac{\Delta s}{\Delta x} \right | + | diff = - \frac{2fA}{n+2} (\rho\,g)^n \left ( \frac{\sum H}{2} \right ) ^{n+2} \left | \frac{\Delta\, s}{\Delta\, x} \right |^{n-1}\left [\frac{H_{0}^{2n+1}}{X_{0} ^{n+1} D_{0}}\right ]\left [\frac{\Delta\, t} {\left (\Delta\,x\right )^2}\right ] |
+ | |||
+ | </math>. | ||
+ | |||
+ | |||
+ | Note that ''diff'' is not simply the scaled diffusivity but carries the appropriate time and grid steps (final bracketed quantity). To find the ice flux, | ||
+ | |||
+ | <math> | ||
+ | Q' = - D'w' \frac{\Delta\, s'} {\Delta\,x'} | ||
+ | |||
</math> | </math> | ||
− | + | however, in the code, we need to remember to reset the grid steps so, | |
− | + | <math> | |
+ | Q' = - diff w' \frac{\Delta\, s'} {\Delta\,x'} \left [\frac{\left (\Delta\,x'\right )^2}{\Delta\,t'}\right ] = - diff w'\Delta\, s'\left [\frac{\Delta\,x'}{\Delta\,t'}\right ] | ||
+ | |||
+ | </math>. | ||
+ | |||
+ | |||
+ | Finally, we need to look at the convergence term. In this case, nothing needs to be done because the various grid steps are needed however some averaging between grids is required, | ||
− | + | <math> | |
+ | conv = \frac{\sum diff} {2w'} \frac {\Delta\,w'} {2\Delta\,x'} | ||
− | + | </math> | |
− | + | '''''Back to [[Skadia]]''''' |
Latest revision as of 16:55, 2 November 2007
In this section, subscript 0 is used to denote scales; primed symbols denote scaled quantities; unadorned symbols denote unscaled quantities; and finite difference approximations are denoted using [math]\displaystyle{ \Delta\, }[/math].
Scaling the equation for ice thickness evolution,
[math]\displaystyle{ \frac{\delta\,s} {\delta\,t}= b + \frac{\delta\,} {\delta\,x} D \frac{\delta\,s} {\delta\,x} + \frac {D} {w} \frac{\delta\,w} {\delta\,x}\frac{\delta\,s} {\delta\,x} }[/math]
[math]\displaystyle{
\left [\frac{H_{0}}{T_{0}}\right ]\frac{\delta\,s'} {\delta\,t'} = \left [B_{0}\right]b' + \left [\frac{H_{0}D_{0}}{X_{0} ^2}\right ]\frac{\delta\,} {\delta\,x'}D' \frac{\delta\,s'} {\delta\,x'} + \left [\frac{H_{0}D_{0}W_{0}}{X_{0} ^2W_{0}}\right ]\frac {D'} {w'} \frac{\delta\,w'} {\delta\,x'}\frac{\delta\,s'} {\delta\,x'}
}[/math]
and choosing
[math]\displaystyle{
B_{0}= \frac{H_{0}}{T_{0}}
}[/math]
[math]\displaystyle{
D_{0}= \frac{X_{0} ^2}{T_{0}} = \frac{B_{0} X_{0} ^2}{H_{0}}
}[/math]
we obtain
[math]\displaystyle{ \left [\frac{H_{0}}{T_{0}}\right ]\frac{\delta\,s'} {\delta\,t'} = \left [\frac{H_{0}}{T_{0}}\right ]b' + \left [\frac{H_{0}X_{0}^2}{T_{0}X_{0} ^2}\right ]\frac{\delta\,} {\delta\,x'}D' \frac{\delta\,s'} {\delta\,x'} + \left [\frac{H_{0}X_{0}^2W_{0}}{X_{0} ^2 T_{0} W_{0}}\right ]\frac {D'} {w'} \frac{\delta\,w'} {\delta\,x'}\frac{\delta\,s'} {\delta\,x'} }[/math]
In the code, diffusivity is found as (sigma refers to averaging needed to move between normal and staggered grid)
[math]\displaystyle{ diff = - \frac{2fA}{n+2} (\rho\,g)^n \left ( \frac{\sum H}{2} \right ) ^{n+2} \left | \frac{\Delta\, s}{\Delta\, x} \right |^{n-1}\left [\frac{H_{0}^{2n+1}}{X_{0} ^{n+1} D_{0}}\right ]\left [\frac{\Delta\, t} {\left (\Delta\,x\right )^2}\right ] }[/math].
Note that diff is not simply the scaled diffusivity but carries the appropriate time and grid steps (final bracketed quantity). To find the ice flux,
[math]\displaystyle{ Q' = - D'w' \frac{\Delta\, s'} {\Delta\,x'} }[/math]
however, in the code, we need to remember to reset the grid steps so,
[math]\displaystyle{ Q' = - diff w' \frac{\Delta\, s'} {\Delta\,x'} \left [\frac{\left (\Delta\,x'\right )^2}{\Delta\,t'}\right ] = - diff w'\Delta\, s'\left [\frac{\Delta\,x'}{\Delta\,t'}\right ] }[/math].
Finally, we need to look at the convergence term. In this case, nothing needs to be done because the various grid steps are needed however some averaging between grids is required,
[math]\displaystyle{ conv = \frac{\sum diff} {2w'} \frac {\Delta\,w'} {2\Delta\,x'} }[/math]
Back to Skadia