Difference between revisions of "Model dynamics"

From SourceWiki
Jump to navigation Jump to search
 
(14 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
The model dynamics allow the glacier thickness and width to evolve in response to the climate perturbations applied.
 
== function calcthck ==
 
== function calcthck ==
 
This function returns ice thickness along the glacier at the new time including the effects of local mass balance and ice flow.  This is done using an implicit technique and is complicated by the need to incorporate the effect of possible branches in the glacier system.  The equation to be solved is,
 
This function returns ice thickness along the glacier at the new time including the effects of local mass balance and ice flow.  This is done using an implicit technique and is complicated by the need to incorporate the effect of possible branches in the glacier system.  The equation to be solved is,
Line 20: Line 21:
 
#Finally, unpack the new surface elevations from the matrix inversion output to the appropriate positions in the surface elevation array (usrf) using information in mask, and then find new thicknesses using bedrock elevation (topg) and glacier length.
 
#Finally, unpack the new surface elevations from the matrix inversion output to the appropriate positions in the surface elevation array (usrf) using information in mask, and then find new thicknesses using bedrock elevation (topg) and glacier length.
  
 +
=== subroutine putpcgc ===
  
 
 
function getconv (contained in calcthck)
 
This function returns the effect of flow convergence (i.e., varying widths) along the glacier.  This is determined from
 
 
where standard symbols are defined in Table 1.  The term is scaled and is determined on the non-staggered grid that is used for thickness calculations.  It uses diffusivity from the staggered grid and widths on the non-staggered grid.  The function is called for each grid point in turn; this means that it is the responsibility of the calling routine to deal with branching in the system.
 
This function is called from calcthck and the returned information is held in array conver. 
 
subroutine putpcgc (contained in calcthck)
 
 
This simple subroutine fills a sparse matrix using the coefficients supplied.  The sparse matrix has a three column format (row, column and value) and can be used with the SLAP matrix algebra library.  The subroutine checks to ensure no zero values are entered.  The sparse matrix itself is held in module pcgdwk.
 
This simple subroutine fills a sparse matrix using the coefficients supplied.  The sparse matrix has a three column format (row, column and value) and can be used with the SLAP matrix algebra library.  The subroutine checks to ensure no zero values are entered.  The sparse matrix itself is held in module pcgdwk.
 
This subroutine is called from calcthck and is called once per matrix element.
 
This subroutine is called from calcthck and is called once per matrix element.
subroutine slapsolv (contained in calcthck)
+
 
This subroutine employs the SLAP matrix algebra library to solve the matrix inversion problem Ax=b, where A and b are known and x is required (in this case, ice thickness).  It expects a sparse form of the matrix to exist in module pcgdwk, and will first convert the anticipated three-column format into SLAP’s own storage format (ds2y).  The inversion itself is performed using one of a number of preconditioned conjugate-gradient methods available in SLAP (dslucs).  Finally, the convergence of the inversion is checked and the program stopped if convergence has not been achieved.
+
=== subroutine slapsolv ===
 +
 +
This subroutine employs the SLAP matrix algebra library to solve the matrix inversion problem '''Ax'''='''b''', where '''A''' and '''b''' are known and '''x''' is required (in this case, ice thickness).  It expects a sparse form of the matrix to exist in module '''pcgdwk''', and will first convert the anticipated three-column format into SLAP’s own storage format ('''ds2y''').  The inversion itself is performed using one of a number of preconditioned conjugate-gradient methods available in SLAP (dslucs).  Finally, the convergence of the inversion is checked and the program is stopped if convergence has not been achieved.
 
This subroutine is called from calcthck.  
 
This subroutine is called from calcthck.  
function calcflux
+
 
This function returns the total horizontal flux of ice along the glacier.  This is determined from
+
== function calcflux ==
 +
 
 +
This function returns the total horizontal flux of ice along the glacier.  This is determined from,
 +
::<math>Q^{'}=q^{'}w^{'}=-D^{'}w{'}\frac{\delta\,s^{'}}{\delta\,x^{'}}</math>
 
   
 
   
where standard symbols are defined in Table 1. The flux is scaled and is determined on a staggered grid that has points positioned halfway between adjacent thickness grid points. The algorithm takes into account any branching in the system. If both up and downstream points have no ice then flux is set to zero.
+
where standard symbols are defined in ''Table 1''. The flux is scaled and is determined on a staggered grid that has points positioned halfway between adjacent thickness grid points. The algorithm takes into account any branching in the system. If both up and downstream points have no ice then the flux is set to zero.<br>
Note that this calculation is not needed for the main thickness-evolution calculation and is performed solely for diagnostic reasons. This function is called from valley and the returned information is held in array flux.  
+
Note that this calculation is not needed for the main thickness-evolution calculation and is performed solely for diagnostic reasons. This function is called directly from '''valley''' and the returned information is held in array, '''''flux'''''.
function calcwdth
+
 
This function returns the scaled width of the glacier.  This is determined using
+
== function calcwdth ==
 +
 
 +
This function returns the scaled width of the glacier.  This is determined using, <br>
 +
<math>w^{'}=w^{'}_{r}\left({\frac{H^{'}}{H^{'}_{r}}}\right)^{p}+ w^{'}_{l}</math>
 
   
 
   
where standard symbols are defined in Table 1, and wr and Hr are (scaled) reference widths and thickness.  The parameter p is typically 0.5 and is hard coded in the function, while w1 is a small number incorporated to stop width becoming zero in the vent of zero ice thickness (which is important in the ice thickness solver).
+
where standard symbols are defined in , and <math>w_{r}</math> and <math>H_{r}</math> are (scaled) reference widths and thickness.  The parameter ''p'' is typically 0.5 and is hard coded in the function, while <math>w_{l}</math> is a small number incorporated to stop width becoming zero in the event of zero ice thickness (which is important in the ice thickness solver).
This function is called from valley and the returned information is held in array wdth.
+
This function is called from '''valley''' and the returned information is held in array '''wdth'''.

Latest revision as of 15:14, 12 November 2007

The model dynamics allow the glacier thickness and width to evolve in response to the climate perturbations applied.

function calcthck

This function returns ice thickness along the glacier at the new time including the effects of local mass balance and ice flow. This is done using an implicit technique and is complicated by the need to incorporate the effect of possible branches in the glacier system. The equation to be solved is,

[math]\displaystyle{ \frac{\delta\,s} {\delta\,t}= b - \frac{1} {w} \frac{\delta\,wq} {\delta\,x} }[/math]
[math]\displaystyle{ = b- \frac{\delta\,q} {\delta\,x}- \frac{q}{w} \frac{\delta\,w} {\delta\,x} }[/math]
[math]\displaystyle{ = b+ \frac{\delta} {\delta\,x}D \frac{\delta\,s} {\delta\,x}+ \frac{D}{w} \frac{\delta\,w} {\delta\,x}\frac{\delta\,s} {\delta\,x} }[/math]
[math]\displaystyle{ = b+ \frac{\delta} {\delta\,x}D \frac{\delta\,s} {\delta\,x}+ c \frac{\delta\,s} {\delta\,x} }[/math].

Note that we are not incorporating changes in bedrock elevation so that [math]\displaystyle{ \frac{\delta\,s} {\delta\,t}= \frac{\delta\,H} {\delta\,t} }[/math]. The numerical technique involved is based on Crank-Nicolson time differencing:

[math]\displaystyle{ s_{t+\Delta\,t}=s_{t}+ \Delta\,t \left [{b}\right ]_{t}+ \Delta\,t\alpha\left [{\frac{\delta}{\delta\,x}D\frac{\delta\,s} {\delta\,x}+c\frac{\delta\,s} {\delta\,x}}\right ]_{t}+\Delta\,t \left({1-\alpha}\right)\left [{\frac{\delta}{\delta\,x}D\frac{\delta\,s} {\delta\,x}+c\frac{\delta\,s} {\delta\,x}}\right ]_{t+\Delta\,t} }[/math]

where we follow the suggestion of Hindmarsh () and set [math]\displaystyle{ \alpha=1.5 }[/math]. The calculation is best explained in terms of the matrix equation Ax=b, where the vector x (in vector answ) contains the unknown thickness at the new time level; the vector b (in vector rhsd) contains the known thickness at the old time level, the known mass balance and the known flow at the old time level; and the matrix A contains coefficients relating to the thickness and surface elevation at the new time level (i.e., the finite difference approximations to the two terms within the bracketed quantities on the far right hand side). The algorithm proceeds in five stages.

  1. Determine the diffusivities (D) from available thickness and surface elevation at the old time level; we approximate diffusivity at the new time level by the value at the old level. Diffusivity is calculated on a staggered grid halfway between adjacent thickness points. This is done by calling function getdiff and checking to see if the particular point under consideration is affected by a branch.
  2. Determine the flow convergence (c) from available width and diffusivity at the old time level; again we approximate convergence at the new time level by the value at the old level. Diffusivity is calculated at the original thickness grid points. This is done by calling function getconv and checking to see if the particular point under consideration is affected by a branch.
  3. We are now in a position to fill matrix A. We enter a value into the sparse form of A if the mask variable shows that this is appropriate (see function calcmask). This is done by repeated calls to putpcgc. In the case of a non-branching system, this results in a simple tridiagonal matrix. A great deal of care is required to enter this information correctly for branched systems. The known vector b is filled at the same time using the diffusive and convergence calculated above.
  4. With the matrix A and vector b filled, we can obtain x by standard matrix inversion algorithms (in this case SLAP, see slapsolve). We only do this if there is a significant length of glacier etc.
  5. Finally, unpack the new surface elevations from the matrix inversion output to the appropriate positions in the surface elevation array (usrf) using information in mask, and then find new thicknesses using bedrock elevation (topg) and glacier length.

subroutine putpcgc

This simple subroutine fills a sparse matrix using the coefficients supplied. The sparse matrix has a three column format (row, column and value) and can be used with the SLAP matrix algebra library. The subroutine checks to ensure no zero values are entered. The sparse matrix itself is held in module pcgdwk. This subroutine is called from calcthck and is called once per matrix element.

subroutine slapsolv

This subroutine employs the SLAP matrix algebra library to solve the matrix inversion problem Ax=b, where A and b are known and x is required (in this case, ice thickness). It expects a sparse form of the matrix to exist in module pcgdwk, and will first convert the anticipated three-column format into SLAP’s own storage format (ds2y). The inversion itself is performed using one of a number of preconditioned conjugate-gradient methods available in SLAP (dslucs). Finally, the convergence of the inversion is checked and the program is stopped if convergence has not been achieved. This subroutine is called from calcthck.

function calcflux

This function returns the total horizontal flux of ice along the glacier. This is determined from,

[math]\displaystyle{ Q^{'}=q^{'}w^{'}=-D^{'}w{'}\frac{\delta\,s^{'}}{\delta\,x^{'}} }[/math]

where standard symbols are defined in Table 1. The flux is scaled and is determined on a staggered grid that has points positioned halfway between adjacent thickness grid points. The algorithm takes into account any branching in the system. If both up and downstream points have no ice then the flux is set to zero.
Note that this calculation is not needed for the main thickness-evolution calculation and is performed solely for diagnostic reasons. This function is called directly from valley and the returned information is held in array, flux.

function calcwdth

This function returns the scaled width of the glacier. This is determined using,
[math]\displaystyle{ w^{'}=w^{'}_{r}\left({\frac{H^{'}}{H^{'}_{r}}}\right)^{p}+ w^{'}_{l} }[/math]

where standard symbols are defined in , and [math]\displaystyle{ w_{r} }[/math] and [math]\displaystyle{ H_{r} }[/math] are (scaled) reference widths and thickness. The parameter p is typically 0.5 and is hard coded in the function, while [math]\displaystyle{ w_{l} }[/math] is a small number incorporated to stop width becoming zero in the event of zero ice thickness (which is important in the ice thickness solver). This function is called from valley and the returned information is held in array wdth.