
An Introduction to Data Science

Gethin Williams

November 5, 2015

Contents

1 Introduction 1

2 Overview 2

3 Data Wrangling 3
3.1 Data mining/scraping . 4
3.2 Data Cleaning and Transforms . 5
3.3 Data Storage and Curation . 6
3.4 Databases . 7
3.5 Big Data . 7

4 Methods 8
4.1 Exploratory Data Analysis . 8
4.2 Linear Regression . 9
4.3 Logistic Regression . 13
4.4 k-Nearest Neighbours . 15
4.5 Principle Component Analysis . 16

5 Tools 19

6 Communicating Your Findings 19

1 Introduction

The term data science is in vogue. Its definition, however, has proved somewhat elusive.
Here’s a little of what wikipedia has to say on the topic:

Data science is, in general terms, the extraction of knowledge from data. It em-
ploys techniques and theories drawn from many fields within the broad areas
of mathematics, statistics, and information technology, including signal process-
ing, probability models, machine learning, statistical learning, computer program-
ming, data engineering, pattern recognition and learning, visualization, uncer-
tainty modeling, data warehousing, and high performance computing. Methods
that scale to Big Data are of particular interest in data science, although the
discipline is not generally considered to be restricted to such data. . .

This gives us a starting point but we can see that this definition encompasses a pretty
broad range of activities. The term Big Data has also reared its head, but more of that later.
In addition to verbose paragraphs, such as the above, we are offered graphical descriptions
(see figure 1), as well as pithy one-liners:

1

Figure 1: Drew Conway’s Venn diagram of data science.

Data Scientist (noun): Person who is better at statistics than any software engi-
neer and better at software engineering than any statistician. –Josh Wills

Some people would prefer to relabel portions of Drew Conway’s Venn diagram. For exam-
ple, you may hear “traditional research” referred to as “data intensive research” and “machine
learning” upgraded to “data science” itself.

Jeroen Janssens offers an acronym which usefully outlines the process of doing data science,
stating that:

Data science is OSEMN (pronounced as awesome). That is, it involves Obtaining,
Scrubbing, Exploring, Modeling, and iNterpreting data.

It would not be wise if I attempted to cover every nook and cranny of this broad field.
Rather, I will attempt to provide an introduction that is tailored to research activity ongoing
here in the University of Bristol. A legitimate example of data science is to collect the
browsing an shopping habits of an individual and to provide recommendations for further
browsing or shopping. If you were a bookseller with a very large online presence, this sort
of activity would be of great interest to you and your shareholders. However, that is not us.
We are interested in doing academic research and so I will attempt to only cover topics, tools
and methods that are relevant to that endeavour.

2 Overview

I will split the rest of the document into three main sections:

Data Wrangling Sourcing, preparing and storing your data.

Methods The statistical and computational foundations of the data analysis.

2

Tools The software which you investment your time into in order to get the job done.

I will not cover the set in Drew Conway’s Venn diagram labelled, “Substantive Expertise”.
This is because you already have that and I, most likely, do not for your particular area of
specialisation.

I’ve deliberately placed the data wrangling section first. This is becuase it highlights one
of the distinctions that between data science and tradtional statistics. Namely that a data
scientist will not typically be presented with a neatly packaged data set to analyse. Instead
she will be responsible for obtaining the raw data, cleaning it and converting it into a format
ammenable to any subsequent work or analysis, before communicating any outcomes and
perhaps making the data available to others. Data wrangling typically involves a number of
different tools. The Linux command line, with its offering of a pipeline of commands, is an
environment well suited to data wrangling.

The methods section will have a great deal in common with material offered by traditional
statistics textbooks, as well as tomes on machine learning. To that extent I will endeavour
to provide links to other material, rather than rehash existing explanations or examples. I
will however, try to place each method in an evolving context, relate them and outline their
key attributes. Many of the tools available will provide ready access to these methods and
so you should not expect to have to program any of these methods yourself (unless, of course
you want to!) but, rather, to select judiciously from an available menu.

A great many good tools exist for data science and providing an exhaustive description
and comparison would be a fools errand most likely superceded before completed. So, for the
purpose of my examples, I will use R whenever possible. R is not a universal panacea, but I
believe that it is a really good starting point. (Not least as it provides an interface to many
of those other tools.) Whenever possible, I will also provide links to further reading to other
tools which I think could be of interest.

3 Data Wrangling

In this first section we immediately engage with an examples of how working as a data scientist
differs from what may have been traditionally thought of as statistical modelling, say. Being
tasked with first sourcing and curating your data, before being able to embark on any analysis
is a situation which, I think, will be familiar to those working in academic research.

I’m using the term data wrangling here in its broadest possible sense. Here, again, is a
little of what wikipedia has on the topic:

Data munging or data wrangling is loosely the process of manually converting
or mapping data from one ”raw” form into another format that allows for more
convenient consumption of the data with the help of semi-automated tools. This
may include further munging, data visualization, data aggregation, training a
statistical model, as well as many other potential uses. Data munging as a process
typically follows a set of general steps which begin with extracting the data in a
raw form from the data source, ”munging” the raw data using algorithms (e.g.
sorting) or parsing the data into predefined data structures, and finally depositing
the resulting content into a data sink for storage and future use. Given the rapid
growth of the internet such techniques will become increasingly important in the
organization of the growing amounts of data available. . .

3

In this section we’ll consider how you might first source your data, transformations which
might be advantageous (including file formats) as well as some possible ’data sinks’.

3.1 Data mining/scraping

.
Let’s imagine that some data you’re interested in resides on the internet–it’s not hard to

do! But how are you going to access that data without resorting to some laborious manual
process of cut-and-paste? Enter a data scraping tool.

First of all, let’s identify some data on the web that we would be interested in us-
ing. http://en.wikipedia.org/wiki/Iris_flower_data_set describes 150 observations
of three different species of Iris (50 each).

Now let’s consider a simple yet effective approach to data scraping that requires no pro-
gramming knowledge. Using Google Docs (available via your UoB account) you can open a
spreadsheet and import tables and lists directly from a webpage. In the formula (Fx) cell
type:

=ImportHTML("http://en.wikipedia.org/wiki/Iris_flower_data_set","table",1)

The first argument to the ImportHTML function is the URL of the page you are interested
in. The second argument is either “table” or “list” and the last argument is the index of the
item you are interested in, in the event that there are more than one table or list on the page.
See figure 3.1 for the result.

Figure 2: Scraping a table from a web page using a Google Docs spreadsheet.

The data can then be saved as, e.g. a CSV (comma separated variable) file and subse-
quently used by other tools or applications (for example the resulting CSV file can be easily
loaded into R to create a data frame: https://source.ggy.bris.ac.uk/wiki/R1#Reading_
Data_from_File).

Nifty. Another, similar tool that you might try is the web-based: https://import.io.
An example of the category of programmable web scrapers is given by the python pack-

age, Beautiful Soup, http://www.crummy.com/software/BeautifulSoup/bs4/doc/. This
package is available from various Linux package managers, including Ubuntu.

4

http://en.wikipedia.org/wiki/Iris_flower_data_set
https://source.ggy.bris.ac.uk/wiki/R1#Reading_Data_from_File
https://source.ggy.bris.ac.uk/wiki/R1#Reading_Data_from_File
https://import.io
http://www.crummy.com/software/BeautifulSoup/bs4/doc/

A programmable web scraper has a learning curve which is much steeper than the simpler
Google Docs example given above. However, it offers significantly more in return. For exam-
ple, imagine you had a long list of URLs to source some data from. It would be laborious to
manually create spreadsheets to capture data from each one. If you were to use, for example,
Beautiful Soup, you could write a loop which visited all the URLs in turn. Other things you
could do include writing conditionals that controlled the behaviour of the script based on the
content that you found at a URL; you could also recursively follow links embedded in a page.
The sky’s the limit and you can bring all of the power of the Python language to bear on
your problem.

Below is a very simple example, showing how you can use Beautiful Soup to access the
same tabular iris data that we using Google Docs. You can see that the HTML mark-up is
stored in an object (called soup) and that you can search for HTML tags using the object’s
methods.

import urllib2

from BeautifulSoup import BeautifulSoup

page = urllib2.urlopen(’http://en.wikipedia.org/wiki/Iris_flower_data_set’)

soup = BeautifulSoup(page)

table = soup.find("table")

for row in table.findAll("tr"):

cells = row.findAll("td")

print cells

Some websites allow you to download data in a format other than the raw HTML code via
Application Programmer Interfaces (APIs). This facility, which amounts to you requesting
access to an appropriately formulated URL, often requires you to register with the website
provider for your own key. Popular formats for this method of data download include the
Extensible Markup Language (XML) and JavaScript Object Notation (JSON). An example
of a data source that offers you access via an API is the New York Times (see: http:

//developer.nytimes.com/).
If you would like to try a quick and simple test of downloading data in JSON format, you

can visit http://www.jsontest.com. The command line below will retrieve a small amount
of data and store it in a file:

c u r l −s ” http :// headers . j s o n t e s t . com/” > test . j s on

Screen scraping is a subcategory of web scraping that involves the use of Optical Character
Regognition (OCR) software. I’ll not give an example of screen scraping here.

3.2 Data Cleaning and Transforms

Now that you have secured your data, either by scraping the web or via other means, it is
likely that you’ll need to undertake at least some data cleaning and format manipulation so
that your data is in a suitable form to be consumed by subsequent steps of a process, working
towards your goal.

As a very simple example, the rows of the table obtained using the Google Docs approach
to web scraping look like:

5.1,3.5,1.4,0.2,*I. setosa*

5

http://developer.nytimes.com/
http://developer.nytimes.com/
http://www.jsontest.com

The species labels have been decorated with some *s (perhaps because the text was itali-
cised on the web page) which you probably don’t want. How can we remove those asterisks
in a non-labour intensive way?

There are a great many tools which can be brought to bear on the task of cleaning data
stored in text files. Command line utilities such as sed, awk, grep, head and tail immediately
spring to mind for those familiar with the Linux command line. For the example above, sed
can be used to find all the *s and replace them with the empty string (effectively deleting
them):

sed ’ s /\∗//g ’ i r i s e s . csv > i r i s e s −without−a s t e r i s k s . csv

Python provides many functions for manipulating strings and so the task of remove *s
would also be easy if you were to access the data from a Python script.

Jeroen Janssens’ blog post, gives some useful examples of converting, e.g. JSON to
CSV format or XML to JSON. Jeroen has also written a book on the topic, http://

datascienceatthecommandline.com/.
Languages such as Python and R also have many packages which facilitate similar format

transformations.
All of the foregoing examples have used text format files. Binary format files require far less

disk space than their text equivalents, however, processing these files may require you to create
more bespoke tools to manipulate them. An exception to this, however, is the NetCDF format,
for which many processing and visualisation tools exist, e.g. the NetCDF Operators (NCO,
http://nco.sourceforge.net/); the Climate Data Operators (CDO, https://code.zmaw.
de/projects/cdo) and the Panoply viewer (http://www.giss.nasa.gov/tools/panoply/).

3.3 Data Storage and Curation

We’ll typically start exploring some data source using our PC or laptop. However, it’s quite
likely that this is not a good home for that data in the longer term. The reasons for this are
many and varied. Let’s start with some obvious ones. If all your important data is stored on
your laptop and you lose it, or it goes phut, then you’ll be recounting a tale a woe to your
nearest and dearest. Perhaps all the full dataset is too large for your PC to hold it? So it
seems likely that some form of remote data repository will provide a better home. However,
not all repositories are created alike, and a number of other considerations will inform our
decision. Different projects will have different demands. Perhaps you’ve completed all the
data processing and analysis that you forsee and you would be happy with a low-cost archive
facility. If, on the other hand, you plan to read and write to this dataset many times in
the future, it would make sense to store the data on a readily available, better performing
filesystem. This is particularly important for any High Performance Computing (HPC) based
processing. If it is very important that the data is not lost if some computer hardware
were to fail, then some way of managing multiple copies (preferable in geographically distant
locations) will rise to the top of your wish list. What if the dataset is likely to evolve and you
would like to track and access different versions? Version control system exist to address this
need. How long do you want to store your data for? etc. etc.

The University of Bristol Research Data Service (http://data.bris.ac.uk/) offers sup-
port and advice on exactly these kinds of questions. They can help you formulate data man-
agement plan and also address requirements regarding data set down by Research Councils
UK.

6

http://jeroenjanssens.com/2013/09/19/seven-command-line-tools-for-data-science.html
http://datascienceatthecommandline.com/
http://datascienceatthecommandline.com/
http://nco.sourceforge.net/
https://code.zmaw.de/projects/cdo
https://code.zmaw.de/projects/cdo
http://www.giss.nasa.gov/tools/panoply/
http://data.bris.ac.uk/

3.4 Databases

Part of finding a good home for you data is to consider whether it should be stored in a
database. Wikipedia defines a database as:

A database is an organized collection of data. The data is typically organized to
model aspects of reality in a way that supports processes requiring information.. . .

This helps us to appreciate that selecting an appropriate database can greatly influence
the ease, efficiency or success of subsequent steps towards your goal. A simple, yet often
overlooked example of this is that data can be accessed much more quickly from a database
than it can be from a number of small files.

Relational databases dominate the field and again wikipedia helps us to appreciate why:

A relational database is a digital database whose organization is based on the
relational model of data, as proposed by E.F. Codd in 1970. This model organizes
data into one or more tables (or ”relations”) of rows and columns, with a unique
key for each row. Generally, each entity type described in a database has its own
table, the rows representing instances of that entity and the columns representing
the attribute values describing each instance. Because each row in a table has its
own unique key, rows in other tables that are related to it can be linked to it by
storing the original row’s unique key as an attribute of the secondary row (where
it is known as a ”foreign key”). Codd showed that data relationships of arbitrary
complexity can be represented using this simple set of concepts.

Prior to the advent of this model, databases were usually hierarchical, and each
tended to be organized with a unique mix of indexes, chains, and pointers. The
simplicity of the relational model led to its soon becoming the predominant type
of database.

Thanks to standardisation and the creation of the Structured Query Language (SQL), ac-
cessing relational databases is very well supported and many options exist, including packages
providing access from both Python and R.

Database technology hasn’t stood still since the 1970s, however, and examples of a number
of alternative database methodologies are readily available. These alternatives are often
grouped together under the umbrella term, “NoSQL.” Examples include; Apache CouchDB
(http://couchdb.apache.org/), which a document based database (with a consequence
that objects may differing sets of attributes) which makes much use of web standards and
protocols, such as HTTP abd JSON; and Neo4J (http://neo4j.com/, which allows you to
store data as a graph and so readily supports exploration of connectivity.

3.5 Big Data

Big data is a familiar term with a definition that proves elusive. Big is big, right? But
size is relative. The reponses to questionnaires will not challenge the output of the Large
Hadron Collider, when it comes to disk space usage. OK, but acknowledging that size is
relative still doesn’t offer us anything concrete. Perhaps the most pragmatic definition is that
data becomes big when it can no longer be stored on a single computer. Sometimes working
with big data is the nature of the beast (think google or facebook) and tools exist that are

7

http://couchdb.apache.org/
http://neo4j.com/

designed to scale. However, it would be wise to acknowledge that systems designed to run
across multiple computers are more complex by nature. Good software will shield a user
from much of this complexity, but it is perhaps inevitable that a user will eventually have to
confront at least some of this complexity and that attention will inevitably be diverted from
your original goal. My advice is much the same as for parallel computing: if you absolutely
need to use it then so be it, but don’t be tempted just because it’s a buzz-word.

4 Methods

In the previous section we considered the task of data wrangling and looked at some tools
which help us acquire our data and prepare it for further analysis. This section focusses
squarly on the analysis of data using well established statistical methods. We cannot expect
that the blind application of tools alone will provide us with any worthwhile knowledge.
Instead we must appreciate that understanding and correct use of these methods is key to
gaining any meaningful insight from the data.

We have two sets of observations, represented by the variables x and y, respectively.
Further, we believe that there is a relationship between the them, namely that y is a function
of x, i.e. y = f(x). But is y a continuous function of x, or do different values of x map to
a disctete set of classes? The following sections will help us phrase and subsequently explore
our hypotheses about the world.

Determining the relationships between observations is one aspect of this methods section.
However, there are also other, more nuanced aspects to consider too. Sometimes we are
interested in the exact form of a relationship, so we can learn something new about the
world. Othertimes we may just want to find the most effective (in terms of speed or accuracy,
or both) mapping between x and y, so that some application works as well as it can (and
perhaps affords us the most profit).

We must also appreciate the limitations that we operate under. All data sets are finite
and replete with biases and noise which distort our view of the truth. All methods are imbued
with assumptions and procedural constraints which restrict the inferences that can be made.
However, fear not. Forewarned is forearmed and good inferences can still be made. As our
skills develop, we will design experiments which are robust to some biases and noise and we
will temper our conclusions based upon our knowledge of the limitations of the processes
employed in our work. We will also encounter other important topics such as overfitting, ’the
curse of dimensionality’ and feature selection and in turn knowledge of those issues will enrich
our abilities.

4.1 Exploratory Data Analysis

Our first method is, the often overlooked, Exploratory Data Analysis (EDA). When we first
gain access to some data, we can use summary statistics, such as means, medians etc. and
graphs, such as scatter plots, to build an appreciation of the relationships which are present.
EDA can be invaluable in buidling intuition before we throw a lot of cpu-cyles at a problem.
This reduces the number of dead-ends that we encounter and helps us to draw conclusions
faster.

R includes a number of datasets by default, which considerably simplifies the task of
writing examples. Let’s consider the cars dataset, which is a data frame consisting of 50
records in two columns–vehicle speed (miles per hour) and stopping distance (feet). Within

8

R, we can use the summary function to display some summary data (relevant to the object
under consideration):

summary(ca r s)

gives:

speed dist

Min. : 4.0 Min. : 2.00

1st Qu.:12.0 1st Qu.: 26.00

Median :15.0 Median : 36.00

Mean :15.4 Mean : 42.98

3rd Qu.:19.0 3rd Qu.: 56.00

Max. :25.0 Max. :120.00

When we produce a scatter plot (figure 4.1):

plot (ca r s)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

Figure 3: Scatter plot of the cars dataset.

we start to see the relationship emerging.

4.2 Linear Regression

Cast your mind back to your teenage years. Among many other life altering experiences, you
will have likely encountered the equation of a straight line: y = f(x) = mx + b, where m is
the gradient and b is the intercept with the y-axis. This is a linear model.

Fitting a linear model to your data amounts to testing the hypothesis that your observa-
tions can be explained by a linear relationship between x (the independent variable) and y
(the dependent variable).

9

Once we have our model, we can use it to make predictions and answer questions. For
example, we may observe a car travelling at 26 miles per hour (note this value is not in our
training data) and may ask, how far will this car need to come to a halt if the driver steps on
the brakes? We couldn’t look up a corresponding speed from our training data and provide
the observed stopping distance, but we can use the generalising property of our model of
stopping distances (the line passes through all possible observed values) to make a prediction.

We can create our first linear model, using the least squares criterion for fitting the model
very easily using the built-in R function, ’lm’:

r e s . lm=lm(d i s t ˜ speed , data=car s)

The ’ ’ notation indicates that we want to model of the relationship between the depen-
dent (or response, or predicted) variable, to the left, and the independent (or stimulus, or
observation) variable, to the right, given the built-in dataset called ’cars’.

The least squares criterion boils down to minimising the vertical distance between all the
points in the dataset and the model, i.e a straight line. The result is the line of best fit
according to that criterion.

We can plot the model (line) on top of the data (figure 4.2):

plot (ca r s)
abline (r e s . lm)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

Figure 4: Scatter plot of the cars dataset overlaid with a line of best fit calculated using a
least squares criterion.

It is not good practice to use any model blind, and we should always assess the quality of
our fitted model. The ’summary’ function helps us again here:

> summary(res.lm)

Error in summary(res.lm) : object ’res.lm’ not found

> res.lm=lm(dist ~ speed, data=cars)

10

> summary(res.lm)

Call:

lm(formula = dist ~ speed, data = cars)

Residuals:

Min 1Q Median 3Q Max

-29.069 -9.525 -2.272 9.215 43.201

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -17.5791 6.7584 -2.601 0.0123 *

speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 15.38 on 48 degrees of freedom

Multiple R-squared: 0.6511,Adjusted R-squared: 0.6438

F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

The R-squared metric can be read as the proportion of the variance explained by our
model. The model explains the majority of our data, but there are still some outliers. A low
p-value is also indicative of a good model fit.

We could, of course, fit many more complex functional forms to the cars data, in the hope
of improving our assessments of model fit and we would likely be successful in that regard.
However, modelling every little lump and bump in our training set will likely reduce the
quality of fit to previously unseen data–a test set. This makes intuitive sense, if we recall that
our training set will ineviatably contain biases and noise. Therefore we should be sanguine
about assessments of quality of fit and about the complexity of model that we employ. Even
when our data does not exhibit a linear relationship exactly, there is often utility is assuming
a simple model.

The above summary also tells us the values of the gradient (m = 3.9324) and the intercept
(b = −17.5791). Using these values we can begin to make predictions with our model. For
example, we can predict the stopping distance for a speed outside of the range covered by our
training set, such as 30 mph:

> 3 .9∗30 − 17 .6
[1] 99 .4

Aside from the measures of model fit above, a quick sanity check shows that our model
is not perfect. For example at a speed of zero, we should have a stopping distance of zero.
However our intercept is -17.6.

Least squares is not the only criterion for fitting a linear model and R provides us with
other functions, such as ’rlm’ and ’lgs’ which use other optimisation criteria. They are, again,
very easy to use:

l ibrary (MASS)
r e s . rlm=rlm (d i s t ˜ speed , data=car s)
r e s . l q s=l q s (d i s t ˜ speed , data=car s)

11

To read more about these alternative linear regression functions (both from the MASS
library of functions), see:

rlm - robust regression https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/

rlm.html

lqs - resistant regression https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/

lqs.html

Now that we have two more linear models we can plot them all on to of our data (fig-
ure 4.2):

plot (ca r s)
abline (r e s . lm , l t y =1)
abline (r e s . rlm , l t y =2)
abline (r e s . lqs , l t y =3)
legend (x=5, y=100 , legend=c (”lm” , ”rlm” , ” l q s ”) , l t y=c (1 , 2 , 3))

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

5 10 15 20 25

0
20

40
60

80
10

0
12

0

speed

di
st

lm
rlm
lqs

Figure 5: Scatter plot of the cars dataset overlaid with three different linear models.

Which one is the best? As a first approximation, we can say that they are all equally
good. Philosophically, they are just expressions of differing opinions about what constitutes
a good fit.

Examples of further reading on linear modelling in R, include:

• http://msenux.redwoods.edu/math/R/regression.php

• http://www.r-tutor.com/elementary-statistics

• http://www.r-tutor.com/elementary-statistics/simple-linear-regression

12

https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/rlm.html
https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/rlm.html
https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/lqs.html
https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/lqs.html
http://msenux.redwoods.edu/math/R/regression.php
http://www.r-tutor.com/elementary-statistics
http://www.r-tutor.com/elementary-statistics/simple-linear-regression

4.3 Logistic Regression

In the previous section, we were interested in building a model which could provide a conti-
nously valued prediction given some observation, such as the stopping distance required by a
car travelling at some observed speed. In this section we turn our attention to the goal of being
able to predict membership of a discrete class or category, againgiven some observation(s).

The logistic function is bounded in the range [0,1]. This is useful in the case where we
want to predict membership of one of two classes, as the value of the logistic function can be
interpreted as the probability of belonging to one of those two classes. A number of interesting
problems can be framed as two category predictions. An example is classifing email as spam
or not spam. Building a two category classifier using the logistic function is called logistic
regression.

Another built-in data set, called ’mtcars’, will provide useful data for us as we build our
model. The data set contains, amongst other things, the recorded fuel efficiency and the
kind of transmission–manual or automatic–for a number of cars. When we have fitted the
logist function to this data set we’d like to be able to predict whether a car has a manual or
automatic transmission, solely from the recorded fuel efficiency.

Let’s make a scatter plot using the relevant columns from ’mtcars’:

dat <− mtcars [c (”mpg” , ”am”)]
plot (dat)

●● ●

●●●● ●●●●● ●●●● ●

●● ●

●●●● ●

●● ●● ●● ●

10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mpg

am

Figure 6: Scatter plot of mpg vs am from the built-in mtcars data set. A value of 1.0 on the
am axis indicates an automatic transmission. A value of 0.0 indicates a manual transmission.

As with linear regression, fitting the model to the data requires only a simple call to the
’glm’ function:

r e s .glm=glm(am˜mpg, family=binomial , dat)

To learn more about the ’glm’ function, see:

13

glm - generalized linear model https://stat.ethz.ch/R-manual/R-devel/library/stats/

html/glm.html

A number of different functional forms can be used with a generalized linear model.
Choosing ’binomial’ as the family means that we will be performing logistic regression.

Let’s plot the outcome of the model fitting:

plot (dat , xlab=” Fuel e f f i c i e n c y (mi l e s/ g a l l o n) ” , ylab=” P r ob a b i l i t y o f manual t ransmi s s i on ”)
curve (predict (r e s .glm , data . frame (mpg=x) , type=” resp ”) ,add=TRUE)
points (as . vector (mtcars [[”mpg”]]) , f i tted (r e s .glm) , pch=20)

●● ●

●●●● ●●●●● ●●●● ●

●● ●

●●●● ●

●● ●● ●● ●

10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fuel efficiency (miles/gallon)

P
ro

ba
bi

lit
y

of
 m

an
ua

l t
ra

ns
m

is
si

on

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

Figure 7: The logistic function as fitted to mpg vs am from the mtcars data set.

Slope is an intuitive means to assess classifier. If the training data is completely unseper-
able (i.e. class membership cannot be predicted from the observations) then the slope will be
close to horizontal. This means that the probability of belonging to class X is pretty much
each across all observational values (i.e. the observations provide no new information). On
the other hand, if the slope is close to vertical, then the data is highly seperable based on
the observations and classification accuracy will be high. We can see that fuel efficiency ob-
servations for the two categories of manual or automatic transmission overlap a good deal in
our training data and so the slope is neither vertical nor horizontal and instead is somewhere
between the two. We would expect classification accuracy to be neither good nor bad.

Again we can use the ’summary’ function to tell us about the model fit:

Call:

glm(formula = am ~ mpg, family = binomial, data = dat)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.5701 -0.7531 -0.4245 0.5866 2.0617

14

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/glm.html

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.6035 2.3514 -2.808 0.00498 **

mpg 0.3070 0.1148 2.673 0.00751 **

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 43.230 on 31 degrees of freedom

Residual deviance: 29.675 on 30 degrees of freedom

AIC: 33.675

Number of Fisher Scoring iterations: 5

4.4 k-Nearest Neighbours

In the previous section we looked at a form of classifier that is suitable for a problem containing
two classes. However, what if your problem involves more than two classes? In that case we’ll
need a model or algormithm which we can use to make prediction for an arbitrary number
of classes. One such algorithm is the k-nearest neighbour (kNN) algorithm. Following the
example on the R manual’s kNN page:

k-nearest neighbours http://stat.ethz.ch/R-manual/R-devel/library/class/html/

knn.html

The manual page gives us a concise description of the algorithm:
“k-nearest neighbour classification for test set from training set. For each row of the test

set, the k nearest (in Euclidean distance) training set vectors are found, and the classification
is decided by majority vote, with ties broken at random. If there are ties for the kth nearest
vector, all candidates are included in the vote.”

We’ll avail ourselves of another of R’s built-in datasets. This time Edgar Anderson’s
observations of various aspects (petal and sepal length and width) of three species of Iris
(https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/iris.html).

We can examine the relationship between these various observations and membership of
species classes using the following scatter plot:

Now, let’s divide the available data into training and test sets and then train and evaluate
our kNN classifier using the relevant portions.

l ibrary (class)
t r a i n <− rbind (i r i s 3 [1 : 2 5 , , 1] , i r i s 3 [1 : 2 5 , , 2] , i r i s 3 [1 : 2 5 , , 3])
t e s t <− rbind (i r i s 3 [2 6 : 5 0 , , 1] , i r i s 3 [2 6 : 5 0 , , 2] , i r i s 3 [2 6 : 5 0 , , 3])
c l <− factor (c (rep (” s ” , 25) , rep (”c” , 25) , rep (”v” , 2 5)))
i r i s 3 . knn <− knn (t ra in , t e s t , c l , k = 3 , prob=TRUE)

The ’knn’ function is in the ’class’ library. Since we have cunningly split our data into
two equally sized sets, we can re-use a vector of class lables (’cl’) both when we train and test
our model. The function factor is used to encode a vector as a factor–the terms category and

15

http://stat.ethz.ch/R-manual/R-devel/library/class/html/knn.html
http://stat.ethz.ch/R-manual/R-devel/library/class/html/knn.html
https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/iris.html

Sepal.Length

2.0 2.5 3.0 3.5 4.0

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●
●

●

●
●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●
● ●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

0.5 1.0 1.5 2.0 2.5

4.
5

5.
5

6.
5

7.
5

●
●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
● ●
●●

●
●

●
●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●
●

●

●

●
●●

●
●

●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●
●●

●
●

●

●

2.
0

2.
5

3.
0

3.
5

4.
0

●

●

●
●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●● ●

●

●
●

●

●

●

●

●
Sepal.Width

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●
●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

● ●●

●

●
●

●

●

●

●

●

●●●
● ●

●
● ●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

●● ●●
●● ●● ●●

● ●●●
●

●●●
●
●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

● ●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●
●
●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

●● ●
● ●

●
●●● ● ●●

●
● ●

●
●●

●
●

●
●

●

●
●

● ●●●
●● ● ●●●
● ●●●

●
●● ●
●

●

●
●

● ●●

●
●

●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

● ●
●

●
●●

●
●

●

●

● ●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

Petal.Length

1
2

3
4

5
6

7

●●●
●●

●
●●●●●●●

●●
●
●●

●
●

●
●

●

●
●
● ●●●
●● ●●●●
●●

●●
●

●●●
●

●

●
●
●●●

●
●
●

●

●●
●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●

●●
●

●
●●

●
●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●●

●

●
●

●●

●
●

●
●

●
●

●

4.5 5.5 6.5 7.5

0.
5

1.
0

1.
5

2.
0

2.
5

●●●● ●

●
●

●●
●

●●
●●

●

●●
● ●●

●

●

●

●

● ●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●
●
●

●

●
●

●
●

●●●
●

●

●

●

●
●
● ●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

●● ●● ●

●
●
●●

●
●●

●●
●

●●
● ●●

●

●

●

●

●●

●

●●●●

●

●
●●● ●

●
● ●

●●
●

●

●
●

●● ●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●

●

●
●

●
●

● ●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

●●

●

●

●● ●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

1 2 3 4 5 6 7

●●●●●

●
●
●●
●
●●

●●
●

●●
●●●

●

●

●

●

●●

●

●●●●

●

●
●●●●
●

●●
●●
●

●

●
●

●●●●

●
● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●
● ●

●

●

●
●

●

●

●
●
●

●

●●●
●

●

●

●

●
●
●●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●

●

●

●●●

●

●

●
●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●
●

●

●

Petal.Width

Edgar Anderson's Iris Data

Figure 8: Pair-wise scatter plots of iris data set. Red, green and blue dots are used for
examples of the three different Iris species.

enumerated type are also used for factors. Setting ’prob=true’ means that the proportion of
the votes for the winning class are returned as attribute ’prob’.

A clear way to inspect the performance of our model is to create a table of class predictions
against the actual known classes for observations from the test set:

table (p r ed i c t ed=i r i s 3 . knn , ac tua l=c l)

actual

predicted c s v

c 23 0 4

s 0 25 0

v 2 0 21

We can see that all instances of the species setosa are correcly classified. There are 4
errors classifying instances of virginica and two errors for instances of versicolor–6 errors out
of 25 in total.

kNN has problems if we use features along many axes for each data point. Also if the
scale of these axes are radically different. From this we see the importance of the topics of
feature selection and dimensionality reduction (see the next section). Other approaches to
classification include decision trees, random forests and ANNs etc.

An interesting comparision of decision boundary shapes which can be formed using dif-
ferent forms of classification models is given on http://scikit-learn.org/stable/auto_

examples/classification/plot_classifier_comparison.html.

4.5 Principle Component Analysis

In the previous sections we have seen a progression from linear regression, to logistic regres-
sion for simple classifiers and onto the k-nearest neighbour algorithm for classificaion tasks

16

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html

involving more than two categories. In all these cases we used the observations without al-
teration. However the topic of ’feature selection’ is a very important one and the features, or
observations, that we construct can have a significant bearing on the predictive power of our
models. For this reason I want to include a section of Principle Component Analysis, as an
example of feature selection.

Wikipedia’s entry on Principle Component Analysis (PCA) (https://en.wikipedia.
org/wiki/Principal_component_analysis) tells us:

“Principal component analysis (PCA) is a statistical procedure that uses an orthogonal
transformation to convert a set of observations of possibly correlated variables into a set of
values of linearly uncorrelated variables called principal components. The number of principal
components is less than or equal to the number of original variables. This transformation
is defined in such a way that the first principal component has the largest possible variance
(that is, accounts for as much of the variability in the data as possible), and each succeeding
component in turn has the highest variance possible under the constraint that it is orthogonal
to the preceding components. The resulting vectors are an uncorrelated orthogonal basis set.
The principal components are orthogonal because they are the eigenvectors of the covariance
matrix, which is symmetric. PCA is sensitive to the relative scaling of the original variables.”

Our goal in this section is to investigate classification accuracy again using the kNN algo-
rithm on the Iris data, but this time we will transform (and subsample) our data using PCA.
We’ll first take the log of the values, as this is often recommended for all +ve observations, such
as length measurements, (e.g. http://www.researchgate.net/post/What_is_the_best_

way_to_scale_parameters_before_running_a_Principal_Component_Analysis_PCA) and
then compute the principle components themselves using the ’prcomp’ function:

log . i r <− log (i r i s [, 1 : 4])
i r . pca <− prcomp (log . i r , c en t e r = TRUE, scale . = TRUE)

Again, we can use ’summary’ to inspect our ’model’. Indeed PCA can produce a valuable
model in it’s own right. For example, we may see an effect but are unsure which of many
variables are responsibe. PCA can help us latent variables which ’explain’ the effects.

summary(i r . pca)

Importance of components:

PC1 PC2 PC3 PC4

Standard deviation 1.7125 0.9524 0.36470 0.16568

Proportion of Variance 0.7331 0.2268 0.03325 0.00686

Cumulative Proportion 0.7331 0.9599 0.99314 1.00000

We can see also see how much of the variablity is explained by each of the components
using a plot:

plot (i r . pca , type = ” l ” , main = ” P r i n c i p l e Components”)

Now, we apply kNN to our transformed data. We’ll use the training and test sets as
defined previously and only the first two principle components:

log . t r a i n <− log (t r a i n)
t r a i n . pca <− prcomp (log . t ra in , c en t e r = TRUE, scale . = TRUE)
log . t e s t <− log (t e s t)

17

https://en.wikipedia.org/wiki/Principal_component_analysis
https://en.wikipedia.org/wiki/Principal_component_analysis
http://www.researchgate.net/post/What_is_the_best_way_to_scale_parameters_before_running_a_Principal_Component_Analysis_PCA
http://www.researchgate.net/post/What_is_the_best_way_to_scale_parameters_before_running_a_Principal_Component_Analysis_PCA

●

●

●

●

Principle Components

V
ar

ia
nc

es

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 2 3 4

Figure 9: Principle componets which explain the variance in the iris data set.

t e s t . pca <− prcomp (log . t e s t , c en te r = TRUE, scale . = TRUE)
i r i s 3 . pca . knn <− knn (t r a i n . pca$x [, 1 : 2] , t e s t . pca$x [, 1 : 2] , c l , k = 3 , prob=TRUE)

where, [,1:2] takes the first and second principle components of the projected data set,
i.e.

> train.pca$x[,1:2]

PC1 PC2

[1,] -2.378951933 -0.29586612

[2,] -2.199765498 0.70896486

...

rather than

> train.pca$x

PC1 PC2 PC3 PC4

[1,] -2.378951933 -0.29586612 0.214161332 -0.005070089

[2,] -2.199765498 0.70896486 0.356350930 0.077571403

...

Our results this time are:

table (p r ed i c t ed=i r i s 3 . pca . knn , ac tua l=c l)

actual

predicted c s v

c 21 0 3

s 0 25 0

v 4 0 22

18

Again we see perfect classification for setosa. Three errors for virginica and four errors
for instances of versicolor. 7 errors out of 25 is only marginally more than the 6 errors we
had last time.

In general feature selection, such as dimensionality reduction, can offer use several things,
including:

• It can aid the generalisation of a classifier on new data (i.e. guard against overfitting).
(Approaches which enforce smoothness constraints, such as regularisation can also help
avoid overfitting to the training data.)

• It can make a classification possible at all, for a task which would otherwise need too
much training data.

For further reading on PCA in R see, e.g.:

• http://www.r-bloggers.com/computing-and-visualizing-pca-in-r/

5 Tools

Moving on from the sections on methods. We now have a short section on tools. There are
many (often)tools available which you can use in your data science work. However, you’ll
come to appreciate that they implement similar methods. This is why I placed an emphasis
on methods and why I have merely included a list of tools. Many of the tools come with
their own, very good, documentation. Rather than reproduce that, I thought it was better to
provide examples of using the methods, which you could, in turn recreate with your preferred
tool.

R A great place to start (the basis for most of the examples in this document). https:

//www.r-project.org/

Python (scikit-learn) http://scikit-learn.org/stable/

Weka http://www.cs.waikato.ac.nz/ml/weka/ (and RWeka, https://cran.r-project.
org/web/packages/RWeka/index.html.

Mahout http://mahout.apache.org/

various databases e.g. http://neo4j.com/, http://couchdb.apache.org/

Apache Spark http://en.wikipedia.org/wiki/Apache_Spark

6 Communicating Your Findings

Sooner or later you will need to communicate your results and (hopefully) impress someone.
Two new initiatives that enable you to store document quality text alongside your code are:

R Markdown http://rmarkdown.rstudio.com/

IPython Notebook http://ipython.org/notebook.html

19

http://www.r-bloggers.com/computing-and-visualizing-pca-in-r/
https://www.r-project.org/
https://www.r-project.org/
http://scikit-learn.org/stable/
http://www.cs.waikato.ac.nz/ml/weka/
https://cran.r-project.org/web/packages/RWeka/index.html
https://cran.r-project.org/web/packages/RWeka/index.html
http://mahout.apache.org/
http://neo4j.com/
http://couchdb.apache.org/
http://en.wikipedia.org/wiki/Apache_Spark
http://rmarkdown.rstudio.com/
http://ipython.org/notebook.html

Attractive properties of both of the above include:

Reproducable The code can be directly run by someone else.

Versioning The combined documents can be kept under version control.

Rich Media Code can be embedded alongside explanatory text and graphics.

This document was written using LATEX.

20

	Introduction
	Overview
	Data Wrangling
	Data mining/scraping
	Data Cleaning and Transforms
	Data Storage and Curation
	Databases
	Big Data

	Methods
	Exploratory Data Analysis
	Linear Regression
	Logistic Regression
	k-Nearest Neighbours
	Principle Component Analysis

	Tools
	Communicating Your Findings

